Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells.

نویسندگان

  • Sarah-Maria Fendt
  • Eric L Bell
  • Mark A Keibler
  • Benjamin A Olenchock
  • Jared R Mayers
  • Thomas M Wasylenko
  • Natalie I Vokes
  • Leonard Guarente
  • Matthew G Vander Heiden
  • Gregory Stephanopoulos
چکیده

Reductively metabolized glutamine is a major cellular carbon source for fatty acid synthesis during hypoxia or when mitochondrial respiration is impaired. Yet, a mechanistic understanding of what determines reductive metabolism is missing. Here we identify several cellular conditions where the α-ketoglutarate/citrate ratio is changed due to an altered acetyl-CoA to citrate conversion, and demonstrate that reductive glutamine metabolism is initiated in response to perturbations that result in an increase in the α-ketoglutarate/citrate ratio. Thus, targeting reductive glutamine conversion for a therapeutic benefit might require distinct modulations of metabolite concentrations rather than targeting the upstream signalling, which only indirectly affects the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.

Citrate is a critical metabolite required to support both mitochondrial bioenergetics and cytosolic macromolecular synthesis. When cells proliferate under normoxic conditions, glucose provides the acetyl-CoA that condenses with oxaloacetate to support citrate production. Tricarboxylic acid (TCA) cycle anaplerosis is maintained primarily by glutamine. Here we report that some hypoxic cells are a...

متن کامل

In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation.

Hypoxic and VHL-deficient cells use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate. To gain insights into the role of HIF and the molecular mechanisms underlying RC, we took advantage of a panel of disease-associated VHL mutants and showed that HIF expression is necessary and sufficient for the induction of RC in human renal cell carcinoma (RCC)...

متن کامل

Differential effects of insulin signaling on individual carbon fluxes for fatty acid synthesis in brown adipocytes

Considering the major role of insulin signaling on fatty acid synthesis via stimulation of lipogenic enzymes, differential effects of insulin signaling on individual carbon fluxes for fatty acid synthesis have been investigated by comparing the individual lipogenic fluxes in WT and IRS-1 knockout (IRS-1 KO) brown adipocytes. Results from experiments on WT and IRS-1 KO cells incubated with [5C] ...

متن کامل

Acetate metabolism in cancer cells

Macromolecule biosynthesis is required to duplicate cell components and support proliferation. Studies examining the nutrients used by cancer cells have focused on the contribution of glucose and glutamine carbon for biosynthesis, but the importance of other metabolic fuels is becoming apparent. Labeling of two-carbon units in newly synthesized lipids has been used to infer the nutrients that c...

متن کامل

Cancer Metabolism

Mitochondria provide cells with much more than ATP produced via the electron transport chain (ETC). Cancer cells are no exception. Although many cancer cells rely primarily on aerobic glycolysis for their energy, they still rely on mitochondria to produce precursors for fatty acid synthesis and other biosynthetic processes. How tumor cells with defective mitochondria produce the lipids necessar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013